Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Int J Mol Med ; 46(1): 3-16, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-2225841

ABSTRACT

In the current context of the pandemic triggered by SARS-COV-2, the immunization of the population through vaccination is recognized as a public health priority. In the case of SARS­COV­2, the genetic sequencing was done quickly, in one month. Since then, worldwide research has focused on obtaining a vaccine. This has a major economic impact because new technological platforms and advanced genetic engineering procedures are required to obtain a COVID­19 vaccine. The most difficult scientific challenge for this future vaccine obtained in the laboratory is the proof of clinical safety and efficacy. The biggest challenge of manufacturing is the construction and validation of production platforms capable of making the vaccine on a large scale.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Viral Vaccines , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/classification , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Drug Compounding/methods , Drug Compounding/standards , Drug Compounding/trends , Drug Development/methods , Drug Development/standards , Drug Development/trends , Humans , Patient Safety , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , SARS-CoV-2 , Treatment Outcome , Vaccination/adverse effects , Vaccine Potency , Viral Vaccines/classification , Viral Vaccines/standards , Viral Vaccines/supply & distribution , Viral Vaccines/therapeutic use
3.
Int J Vitam Nutr Res ; 92(1): 49-66, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1721397

ABSTRACT

The novel coronavirus (SARS-CoV-2) causing COVID-19 disease pandemic has infected millions of people and caused more than thousands of deaths in many countries across the world. The number of infected cases is increasing day by day. Unfortunately, we do not have a vaccine and specific treatment for it. Along with the protective measures, respiratory and/or circulatory supports and some antiviral and retroviral drugs have been used against SARS-CoV-2, but there are no more extensive studies proving their efficacy. In this study, the latest publications in the field have been reviewed, focusing on the modulatory effects on the immunity of some natural antiviral dietary supplements, vitamins and minerals. Findings suggest that several dietary supplements, including black seeds, garlic, ginger, cranberry, orange, omega-3 and -6 polyunsaturated fatty acids, vitamins (e.g., A, B vitamins, C, D, E), and minerals (e.g., Cu, Fe, Mg, Mn, Na, Se, Zn) have anti-viral effects. Many of them act against various species of respiratory viruses, including severe acute respiratory syndrome-related coronaviruses. Therefore, dietary supplements, including vitamins and minerals, probiotics as well as individual nutritional behaviour can be used as adjuvant therapy together with antiviral medicines in the management of COVID-19 disease.


Subject(s)
COVID-19 , Vitamins , Dietary Supplements , Humans , Minerals , SARS-CoV-2
4.
J Pers Med ; 12(2)2022 Feb 09.
Article in English | MEDLINE | ID: covidwho-1715472

ABSTRACT

Glutamate release and reuptake play a key role in the pathophysiology of depression. glutamatergic nerves in the hippocampus region are modulated by histaminergic afferents. Excessive accumulation of glutamate in the synaptic area causes degeneration of neuron cells. The H4 receptor is defined as the main immune system histamine receptor with a pro-inflammatory role. To understand the role of this receptor, the drug JNJ7777120 was used to reveal the chronic depression-glutamate relationship. We have important findings showing that the H4 antagonist increases the glutamate transporters' instantaneous activity. In our experiment, it has been shown that blocking the H4 receptor leads to increased neuron cell viability and improvement in behavioral ability due to glutamate. Therefore, JNJ can be used to prevent neurotoxicity, inhibit membrane phospholipase activation and free radical formation, and minimize membrane disruption. In line with our findings, results have been obtained that indicate that JNJ will contribute to the effective prevention and treatment of depression.

5.
Chin J Integr Med ; 28(3): 249-256, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1588737

ABSTRACT

OBJECTIVE: To explore potential natural products against severe acute respiratory syndrome coronavirus (SARS-CoV-2) via the study of structural and non-structural proteins of human coronaviruses. METHODS: In this study, we performed an in-silico survey of 25 potential natural compounds acting against SARS-CoV-2. Molecular docking studies were carried out using compounds against 3-chymotrypsin-like protease (3CLPRO), papain-like protease (PLPRO), RNA-dependent RNA polymerase (RdRp), non-structural protein (nsp), human angiotensin converting enzyme 2 receptor (hACE2R), spike glycoprotein (S protein), abelson murine leukemia viral oncogene homolog 1 (ABL1), calcineurin-nuclear factor of activated T-cells (NFAT) and transmembrane protease serine 2. RESULTS: Among the screened compounds, amentoflavone showed the best binding affinity with the 3CLPRO, RdRp, nsp13, nsp15, hACE2R. ABL1 and calcineurin-NFAT; berbamine with hACE2R and ABL1; cepharanthine with nsp10, nsp14, nsp16, S protein and ABL1; glucogallin with nsp15; and papyriflavonol A with PLPRO protein. Other good interacting compounds were juglanin, betulinic acid, betulonic acid, broussooflavan A, tomentin A, B and E, 7-methoxycryptopleurine, aloe emodin, quercetin, tanshinone I, tylophorine and furruginol, which also showed excellent binding affinity towards a number of target proteins. Most of these compounds showed better binding affinities towards the target proteins than the standard drugs used in this study. CONCLUSION: Natural products or their derivatives may be one of the potential targets to fight against SARS-CoV-2.


Subject(s)
Biological Products , COVID-19 Drug Treatment , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Biological Products/pharmacology , Humans , Mice , Molecular Docking Simulation , SARS-CoV-2
6.
Life (Basel) ; 11(11)2021 Nov 22.
Article in English | MEDLINE | ID: covidwho-1534157

ABSTRACT

(1) Background: The new SARS-COV-2 pandemic overwhelmed intensive care units, clinicians, and radiologists, so the development of methods to forecast the diagnosis' severity became a necessity and a helpful tool. (2) Methods: In this paper, we proposed an artificial intelligence-based multimodal approach to forecast the future diagnosis' severity of patients with laboratory-confirmed cases of SARS-CoV-2 infection. At hospital admission, we collected 46 clinical and biological variables with chest X-ray scans from 475 COVID-19 positively tested patients. An ensemble of machine learning algorithms (AI-Score) was developed to predict the future severity score as mild, moderate, and severe for COVID-19-infected patients. Additionally, a deep learning module (CXR-Score) was developed to automatically classify the chest X-ray images and integrate them into AI-Score. (3) Results: The AI-Score predicted the COVID-19 diagnosis' severity on the testing/control dataset (95 patients) with an average accuracy of 98.59%, average specificity of 98.97%, and average sensitivity of 97.93%. The CXR-Score module graded the severity of chest X-ray images with an average accuracy of 99.08% on the testing/control dataset (95 chest X-ray images). (4) Conclusions: Our study demonstrated that the deep learning methods based on the integration of clinical and biological data with chest X-ray images accurately predicted the COVID-19 severity score of positive-tested patients.

7.
Toxicol Rep ; 8: 1981, 2021.
Article in English | MEDLINE | ID: covidwho-1458671

ABSTRACT

[This corrects the article DOI: 10.1016/j.toxrep.2021.08.010.].

8.
Toxicol Rep ; 8: 1665-1684, 2021.
Article in English | MEDLINE | ID: covidwho-1428525

ABSTRACT

This article examines issues related to COVID-19 inoculations for children. The bulk of the official COVID-19-attributed deaths per capita occur in the elderly with high comorbidities, and the COVID-19 attributed deaths per capita are negligible in children. The bulk of the normalized post-inoculation deaths also occur in the elderly with high comorbidities, while the normalized post-inoculation deaths are small, but not negligible, in children. Clinical trials for these inoculations were very short-term (a few months), had samples not representative of the total population, and for adolescents/children, had poor predictive power because of their small size. Further, the clinical trials did not address changes in biomarkers that could serve as early warning indicators of elevated predisposition to serious diseases. Most importantly, the clinical trials did not address long-term effects that, if serious, would be borne by children/adolescents for potentially decades. A novel best-case scenario cost-benefit analysis showed very conservatively that there are five times the number of deaths attributable to each inoculation vs those attributable to COVID-19 in the most vulnerable 65+ demographic. The risk of death from COVID-19 decreases drastically as age decreases, and the longer-term effects of the inoculations on lower age groups will increase their risk-benefit ratio, perhaps substantially.

9.
Life (Basel) ; 11(9)2021 Aug 31.
Article in English | MEDLINE | ID: covidwho-1390687

ABSTRACT

In the context of the current COVID-19 pandemic, traditional, complex and lengthy methods of vaccine development and production would not have been able to ensure proper management of this global public health crisis. Hence, a number of technologies have been developed for obtaining a vaccine quickly and ensuring a large scale production, such as mRNA-based vaccine platforms. The use of mRNA is not a new concept in vaccine development but has leveraged on previous knowledge and technology. The great number of human resources and capital investements for mRNA vaccine development, along with the experience gained from previous studies on infectious diseases, allowed COVID-19 mRNA vaccines to be developed, conditionally approved and commercialy available in less than one year, thanks to decades of basic research. This review critically presents and discusses the COVID-19 mRNA vaccine-induced immunity, and it summarizes the most common anaphylactic and autoimmune adverse effects that have been identified until now after massive vaccination campaigns.

10.
11.
Toxicol Rep ; 8: 1979, 2021.
Article in English | MEDLINE | ID: covidwho-1386688

ABSTRACT

[This corrects the article DOI: 10.1016/j.toxrep.2021.04.003.].

12.
Toxicol Rep ; 8: 871-879, 2021.
Article in English | MEDLINE | ID: covidwho-1199104

ABSTRACT

The COVID-19 pandemic has had an unprecedented and devastating impact on public health, society and economics around the world. As a result, the development of vaccines to protect individuals from symptomatic COVID-19 infections has represented the only feasible health tool to combat the spread of the disease. However, at the same time the development and regulatory assessment of different vaccines has challenged pharmaceutical industries and regulatory agencies as this process has occurred in the shorter time ever though. So far, two mRNA and two adenovirus-vectored vaccines have received a conditional marketing authorisation in the EU and other countries. This review summarized and discusses the assessment reports of the European Medicine Agency (EMA) concerning the safety of the 3 vaccines currently used in the EU (Pfizer, Moderna and Astra-Zeneca). A particular focus has been paid to safety information from pre-clinical (animal) and clinical (phase 3 trials) studies. Overall, the most frequent adverse effects reported after the administration of these vaccines consisted of local reactions at the injection site (sore arm and erythema) followed by non-specific systemic effects (myalgia, chills, fatigue, headache, and fever), which occurred soon after vaccination and resolved shortly. Rare cases of vaccine-induced immune thrombotic thrombocytopenia have been reported for Vaxzevria. Data on long-term studies, interaction with other vaccines, use in pregnancy/breast-feeding, use in immunocompromised subjects, and in subjects with comorbidities, autoimmune or inflammatory disorders are still missing for these vaccines. Therefore, careful follow-up and surveillance studies for continued vaccine safety monitoring will be needed to ascertain the potential risks of such adverse events or diseases. In conclusion, the benefits and risks of current COVID-19 vaccines must be weighed against the real possibility of contract the disease and develop complications and long-term sequels; all this on the basis of the available scientific evidence and in the absence of unmotivated biases.

13.
J Cell Mol Med ; 25(10): 4523-4533, 2021 05.
Article in English | MEDLINE | ID: covidwho-1140231

ABSTRACT

The outbreak of the coronavirus disease 2019 (COVID-19) has gathered 1 year of scientific/clinical information. This informational asset should be thoroughly and wisely used in the coming year colliding in a global task force to control this infection. Epidemiology of this infection shows that the available estimates of SARS-CoV-2 infection prevalence largely depended on the availability of molecular testing and the extent of tested population. Within molecular diagnosis, the viability and infectiousness of the virus in the tested samples should be further investigated. Moreover, SARS-CoV-2 has a genetic normal evolution that is a dynamic process. The immune system participates to the counterattack of the viral infection by pathogen elimination, cellular homoeostasis, tissue repair and generation of memory cells that would be reactivated upon a second encounter with the same virus. In all these stages, we still have knowledge to be gathered regarding antibody persistence, protective effects and immunological memory. Moreover, information regarding the intense pro-inflammatory action in severe cases still lacks and this is important in stratifying patients for difficult to treat cases. Without being exhaustive, the review will cover these important issues to be acknowledged to further advance in the battle against the current pandemia.


Subject(s)
Antibodies, Viral/immunology , Antigens, Viral/immunology , COVID-19 Testing , COVID-19 , SARS-CoV-2 , Animals , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/immunology , Humans , Immunologic Memory , Mutation , Pandemics , SARS-CoV-2/genetics , SARS-CoV-2/immunology
14.
Toxicol Rep ; 8: 529-535, 2021.
Article in English | MEDLINE | ID: covidwho-1127048

ABSTRACT

Alcohol consumption is associated with multiple diseases and might contribute to vulnerability to SARS-CoV-2 infection. It can also catalyze exacerbations of mental and organic illnesses and predispose to behaviors with an increased risk of infection, severity of disease but also independently of sociopathic behavior and violence. Globally, millions of premature deaths from excessive alcohol consumption occur each year. This paper discusses the effects of increased alcohol consumption and the most important consequences on the health of the population during the social isolation and lockdown during current COVID-19 pandemic.

15.
Int J Mol Med ; 47(1): 92-100, 2021 01.
Article in English | MEDLINE | ID: covidwho-979792

ABSTRACT

As the coronavirus disease 2019 (COVID­19) continues to spread worldwide, it has become evident that the morbidity and mortality rates clearly vary across nations. Although several factors may account for this disparity, striking differences within and between populations indicate that ethnicity might impact COVID­19 clinical outcomes, reflecting the 'color of disease'. Therefore, the role of key biological variables that could interplay with viral spreading and severity indices has attracted increasing attention, particularly among non­Caucasian populations. Although the links between vitamin D status and the incidence and severity of COVID-19 remain elusive, several lines of emerging evidence suggest that vitamin D signaling, targeting several immune­mediated pathways, may offer potential benefits at different stages of SARS-CoV-2 infection. Given that the vitamin D status is modulated by several intrinsic and extrinsic factors, including skin type (pigmentation), melanin polymers may also play a role in variable COVID­19 outcomes among diverse population settings. Moreover, apart from the well­known limiting effects of melanin on the endogenous production of vitamin D, the potential crosstalk between the pigmentary and immune system may also require special attention concerning the current pandemic. The present review article aimed to shed light on a range of mostly overlooked host factors, such as vitamin D status and melanin pigments, that may influence the course and outcome of COVID­19.


Subject(s)
COVID-19/epidemiology , Melanins/immunology , Pandemics , SARS-CoV-2/immunology , Vitamin D Deficiency/immunology , Vitamin D/immunology , Vitamins/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Humans , Signal Transduction , Vitamin D/blood , Vitamins/blood
16.
Toxicol Rep ; 7: 1448-1458, 2020.
Article in English | MEDLINE | ID: covidwho-894246

ABSTRACT

A degraded/dysfunctional immune system appears to be the main determinant of serious/fatal reaction to viral infection (for COVID-19, SARS, and influenza alike). There are four major approaches being employed or considered presently to augment or strengthen the immune system, in order to reduce adverse effects of viral exposure. The three approaches that are focused mainly on augmenting the immune system are based on the concept that pandemics/outbreaks can be controlled/prevented while maintaining the immune-degrading lifestyles followed by much of the global population. The fourth approach is based on identifying and introducing measures aimed at strengthening the immune system intrinsically in order to minimize future pandemics/outbreaks. Specifically, the four measures are: 1) restricting exposure to virus; 2) providing reactive/tactical treatments to reduce viral load; 3) developing vaccines to prevent, or at least attenuate, the infection; 4) strengthening the immune system intrinsically, by a) identifying those factors that contribute to degrading the immune system, then eliminating/reducing them as comprehensively, thoroughly, and rapidly as possible, and b) replacing the eliminated factors with immune-strengthening factors. This paper focuses on vaccine safety. A future COVID-19 vaccine appears to be the treatment of choice at the national/international level. Vaccine development has been accelerated to achieve this goal in the relatively near-term, and questions have arisen whether vaccine safety has been/is being/will be compromised in pursuit of a shortened vaccine development time. There are myriad mechanisms related to vaccine-induced, and natural infection-induced, infections that could adversely impact vaccine effectiveness and safety. This paper summarizes many of those mechanisms.

17.
Front Pharmacol ; 11: 572870, 2020.
Article in English | MEDLINE | ID: covidwho-818891

ABSTRACT

The COVID-19 pandemic represents an unprecedented challenge for the researchers to offer safe, tolerable, and effective treatment strategies for its causative agent known as SARS-CoV-2. With the rapid evolution of the pandemic, even the off-label use of existing drugs has been restricted by limited availability. Several old antivirals, antimalarial, and biological drugs are being reconsidered as possible therapies. The effectiveness of the controversial treatment options for COVID-19 such as nonsteroidal antiinflammatory drugs, angiotensin 2 conversion enzyme inhibitors and selective angiotensin receptor blockers was also discussed. A systemic search in the PubMed, Science Direct, LitCovid, Chinese Clinical Trial Registry, and ClinicalTrials.gov data bases was conducted using the keywords "coronavirus drug therapy," passive immunotherapy for COVID-19', "convalescent plasma therapy," (CPT) "drugs for COVID-19 treatment," "SARS-CoV-2," "COVID-19," "2019-nCoV," "coronavirus immunology," "microbiology," "virology," and individual drug names. Systematic reviews, case presentations and very recent clinical guidelines were included. This narrative review summarizes the available information on possible therapies for COVID-19, providing recent data to health professionals.

18.
Immunol Res ; 68(6): 315-324, 2020 12.
Article in English | MEDLINE | ID: covidwho-812516

ABSTRACT

During the COVID-19 pandemic in a modern era, there is a global consensus on the need for the rapid development of a vaccine against SARS-CoV-2 for effective and sustainable control. Developing these vaccines is fundamental to public health. This urgent need is supported by the scientific explosion in structural and genomic biology that facilitates the urgent development of an ideal COVID-19 vaccine, using new pathways to facilitate its large-scale development, testing, and manufacture. Here, we summarize the types of COVID-19 candidate vaccines, their current stage in early testing in human clinical trials, and the challenges for their implementation.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Viral Vaccines/immunology , Angiotensin-Converting Enzyme 2 , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/immunology , Humans , Immunoglobulin G/immunology , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
19.
Food Chem Toxicol ; 146: 111769, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-803143

ABSTRACT

Common manifestations of COVID-19 are respiratory and can extend from mild symptoms to severe acute respiratory distress. The severity of the illness can also extend from mild disease to life-threatening acute respiratory distress syndrome (ARDS). SARS-CoV-2 infection can also affect the gastrointestinal tract, liver and pancreatic functions, leading to gastrointestinal symptoms. Moreover, SARS-CoV-2 can cause central and peripheral neurological manifestations, affect the cardiovascular system and promote renal dysfunction. Epidemiological data have indicated that cancer patients are at a higher risk of contracting the SARS-CoV-2 virus. Considering the multitude of clinical symptoms of COVID-19, the objective of the present review was to summarize their pathophysiology in previously healthy patients, as well as in those with comorbidities. The present review summarizes the current, though admittedly fluid knowledge on the pathophysiology and symptoms of COVID-19 infection. Although unclear issues still remain, the present study contributes to a more complete understanding of the disease, and may drive the direction of new research. The recognition of the severity of the clinical symptoms of COVID-19 is crucial for the specific therapeutic management of affected patients.


Subject(s)
COVID-19/complications , Cardiovascular Diseases/etiology , Digestive System Diseases/etiology , Kidney Diseases/etiology , Lung Diseases/etiology , Neoplasms/epidemiology , Nervous System Diseases/etiology , COVID-19/epidemiology , COVID-19/physiopathology , Cardiovascular Diseases/physiopathology , Cardiovascular Diseases/virology , Comorbidity , Digestive System Diseases/physiopathology , Digestive System Diseases/virology , Female , Humans , Kidney Diseases/physiopathology , Kidney Diseases/virology , Lung Diseases/physiopathology , Lung Diseases/virology , Male , Nervous System Diseases/physiopathology , Nervous System Diseases/virology , Pandemics , SARS-CoV-2 , COVID-19 Drug Treatment
20.
Int J Mol Med ; 45(6): 1631-1643, 2020 Jun.
Article in English | MEDLINE | ID: covidwho-782222

ABSTRACT

The new outbreak of coronavirus from December 2019 has brought attention to an old viral enemy and has raised concerns as to the ability of current protection measures and the healthcare system to handle such a threat. It has been known since the 1960s that coronaviruses can cause respiratory infections in humans; however, their epidemic potential was understood only during the past two decades. In the present review, we address current knowledge on coronaviruses from a short history to epidemiology, pathogenesis, clinical manifestation of the disease, as well as treatment and prevention strategies. Although a great amount of research and efforts have been made worldwide to prevent further outbreaks of coronavirus­associated disease, the spread and lethality of the 2019 outbreak (COVID­19) is proving to be higher than previous epidemics on account of international travel density and immune naivety of the population. Only strong, joint and coordinated efforts of worldwide healthcare systems, researchers, and pharmaceutical companies and receptive national leaders will succeed in suppressing an outbreak of this scale.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/virology , Coronavirus/pathogenicity , Disease Outbreaks , Pneumonia, Viral/virology , Betacoronavirus/physiology , COVID-19 , Coronavirus/physiology , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Coronavirus Infections/therapy , Humans , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Pneumonia, Viral/therapy , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL